Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se2 solar cells

Identifieur interne : 000059 ( Main/Repository ); précédent : 000058; suivant : 000060

Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se2 solar cells

Auteurs : RBID : Pascal:14-0084496

Descripteurs français

English descriptors

Abstract

Sputtered aluminum doped zinc oxide (ZnO:Al) layers on borosilicate glass were exposed to damp heat (85 °C/85% relative humidity) for 2876 h to accelerate the physical and chemical degradation behavior. The ZnO:Al samples were characterized by electrical, compositional and optical measurements before and after degradation. Hall measurements show that the carrier concentration stayed constant, while the Hall mobility decreased and the overall resistivity thus increased. This can be explained by the increase of potential barriers at the grain boundaries due to the occurrence of space charge regions caused by additional electron trapping sites. X-Ray Diffraction and optical measurements show that the crystal structure and transmission in the range 300-1100 nm do no change, hereby confirming that the bulk structure stays constant. Furthermore, on the surface, white spots appeared, containing elements that migrated from the glass, like silicon and calcium, which reacted with elements from the environment, including oxygen, carbon and chlorine. Depth profiling showed that the increase of the potential barrier is caused by the diffusion of H2O/OH- through the grain boundaries leading to the formation of Zn(OH)2 or similar species or adsorption of species. They also indicate the presence of chloride and sulfide in the top layer and the possible presence of Zn5(OH)8Cl2.H2O and Zn4SO4(OH)6.nH2O.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0084496

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se
<sub>2</sub>
solar cells</title>
<author>
<name sortKey="Theelen, Mirjam" uniqKey="Theelen M">Mirjam Theelen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology</s1>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>TNO, Thin Film Technology</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Delft University of Technology, Photovoltaic Materials and Devices</s1>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>Delft University of Technology, Photovoltaic Materials and Devices</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Boumans, Twan" uniqKey="Boumans T">Twan Boumans</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology</s1>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>TNO, Thin Film Technology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stegeman, Felix" uniqKey="Stegeman F">Felix Stegeman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology</s1>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>TNO, Thin Film Technology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Colberts, Fallon" uniqKey="Colberts F">Fallon Colberts</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology</s1>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>TNO, Thin Film Technology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Illiberi, Andrea" uniqKey="Illiberi A">Andrea Illiberi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology</s1>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>TNO, Thin Film Technology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Berkum, Jurgen" uniqKey="Van Berkum J">Jurgen Van Berkum</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Philips Innovation Services</s1>
<s3>NLD</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>Philips Innovation Services</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barreau, Nicolas" uniqKey="Barreau N">Nicolas Barreau</name>
<affiliation wicri:level="4">
<inist:fA14 i1="04">
<s1>Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS</s1>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>CNRS</wicri:noRegion>
<wicri:noRegion>Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS</wicri:noRegion>
<orgName type="university">Université de Nantes</orgName>
<placeName>
<settlement type="city">Nantes</settlement>
<region type="region" nuts="2">Pays de la Loire</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vroon, Zeger" uniqKey="Vroon Z">Zeger Vroon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>TNO, Thin Film Technology</s1>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>TNO, Thin Film Technology</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zeman, Miro" uniqKey="Zeman M">Miro Zeman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Delft University of Technology, Photovoltaic Materials and Devices</s1>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>Delft University of Technology, Photovoltaic Materials and Devices</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0084496</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0084496 INIST</idno>
<idno type="RBID">Pascal:14-0084496</idno>
<idno type="wicri:Area/Main/Corpus">000086</idno>
<idno type="wicri:Area/Main/Repository">000059</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorption</term>
<term>Borosilicate glass</term>
<term>Carbon</term>
<term>Carrier density</term>
<term>Charge carrier trapping</term>
<term>Chlorides</term>
<term>Chlorine</term>
<term>Copper</term>
<term>Crystal defects</term>
<term>Crystal structure</term>
<term>Depth profiles</term>
<term>Diffusion</term>
<term>Electrical conductivity</term>
<term>Gallium</term>
<term>Grain boundaries</term>
<term>Hall effect</term>
<term>Hall mobility</term>
<term>Humidity</term>
<term>Hydroxides</term>
<term>Indium</term>
<term>Oxide layer</term>
<term>Potential barrier</term>
<term>Selenides</term>
<term>Silicon</term>
<term>Solar cells</term>
<term>Space charge</term>
<term>Sputter deposition</term>
<term>Sulfides</term>
<term>XRD</term>
<term>Zinc</term>
<term>Zinc additions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dépôt pulvérisation</term>
<term>Addition zinc</term>
<term>Couche oxyde</term>
<term>Cellule solaire</term>
<term>Verre borosilicate</term>
<term>Humidité</term>
<term>Effet Hall</term>
<term>Densité porteur charge</term>
<term>Mobilité Hall</term>
<term>Conductivité électrique</term>
<term>Barrière potentiel</term>
<term>Joint grain</term>
<term>Défaut cristallin</term>
<term>Charge espace</term>
<term>Piégeage porteur charge</term>
<term>Diffraction RX</term>
<term>Structure cristalline</term>
<term>Silicium</term>
<term>Carbone</term>
<term>Chlore</term>
<term>Profil profondeur</term>
<term>Diffusion(transport)</term>
<term>Adsorption</term>
<term>Chlorure</term>
<term>Sulfure</term>
<term>Cuivre</term>
<term>Indium</term>
<term>Gallium</term>
<term>Séléniure</term>
<term>Zinc</term>
<term>Hydroxyde</term>
<term>Al2O3</term>
<term>ZnO</term>
<term>Substrat Aluminium</term>
<term>Substrat verre</term>
<term>8115C</term>
<term>8460J</term>
<term>7350J</term>
<term>7361</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Carbone</term>
<term>Chlore</term>
<term>Cuivre</term>
<term>Zinc</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sputtered aluminum doped zinc oxide (ZnO:Al) layers on borosilicate glass were exposed to damp heat (85 °C/85% relative humidity) for 2876 h to accelerate the physical and chemical degradation behavior. The ZnO:Al samples were characterized by electrical, compositional and optical measurements before and after degradation. Hall measurements show that the carrier concentration stayed constant, while the Hall mobility decreased and the overall resistivity thus increased. This can be explained by the increase of potential barriers at the grain boundaries due to the occurrence of space charge regions caused by additional electron trapping sites. X-Ray Diffraction and optical measurements show that the crystal structure and transmission in the range 300-1100 nm do no change, hereby confirming that the bulk structure stays constant. Furthermore, on the surface, white spots appeared, containing elements that migrated from the glass, like silicon and calcium, which reacted with elements from the environment, including oxygen, carbon and chlorine. Depth profiling showed that the increase of the potential barrier is caused by the diffusion of H
<sub>2</sub>
O/OH
<sup>-</sup>
through the grain boundaries leading to the formation of Zn(OH)
<sub>2</sub>
or similar species or adsorption of species. They also indicate the presence of chloride and sulfide in the top layer and the possible presence of Zn
<sub>5</sub>
(OH)
<sub>8</sub>
Cl
<sub>2</sub>
.H
<sub>2</sub>
O and Zn
<sub>4</sub>
SO
<sub>4</sub>
(OH)
<sub>6</sub>
.nH
<sub>2</sub>
O.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>550</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se
<sub>2</sub>
solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>THEELEN (Mirjam)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BOUMANS (Twan)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>STEGEMAN (Felix)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>COLBERTS (Fallon)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ILLIBERI (Andrea)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>VAN BERKUM (Jurgen)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BARREAU (Nicolas)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>VROON (Zeger)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>ZEMAN (Miro)</s1>
</fA11>
<fA14 i1="01">
<s1>TNO, Thin Film Technology</s1>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Delft University of Technology, Photovoltaic Materials and Devices</s1>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Philips Innovation Services</s1>
<s3>NLD</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS</s1>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>530-540</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000505786170810</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0084496</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Sputtered aluminum doped zinc oxide (ZnO:Al) layers on borosilicate glass were exposed to damp heat (85 °C/85% relative humidity) for 2876 h to accelerate the physical and chemical degradation behavior. The ZnO:Al samples were characterized by electrical, compositional and optical measurements before and after degradation. Hall measurements show that the carrier concentration stayed constant, while the Hall mobility decreased and the overall resistivity thus increased. This can be explained by the increase of potential barriers at the grain boundaries due to the occurrence of space charge regions caused by additional electron trapping sites. X-Ray Diffraction and optical measurements show that the crystal structure and transmission in the range 300-1100 nm do no change, hereby confirming that the bulk structure stays constant. Furthermore, on the surface, white spots appeared, containing elements that migrated from the glass, like silicon and calcium, which reacted with elements from the environment, including oxygen, carbon and chlorine. Depth profiling showed that the increase of the potential barrier is caused by the diffusion of H
<sub>2</sub>
O/OH
<sup>-</sup>
through the grain boundaries leading to the formation of Zn(OH)
<sub>2</sub>
or similar species or adsorption of species. They also indicate the presence of chloride and sulfide in the top layer and the possible presence of Zn
<sub>5</sub>
(OH)
<sub>8</sub>
Cl
<sub>2</sub>
.H
<sub>2</sub>
O and Zn
<sub>4</sub>
SO
<sub>4</sub>
(OH)
<sub>6</sub>
.nH
<sub>2</sub>
O.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C50J</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Addition zinc</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Zinc additions</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Couche oxyde</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Oxide layer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Capa óxido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Verre borosilicate</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Borosilicate glass</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Humidité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Humidity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Effet Hall</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Hall effect</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Mobilité Hall</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Hall mobility</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Barrière potentiel</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Potential barrier</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Joint grain</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Grain boundaries</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Défaut cristallin</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Crystal defects</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Charge espace</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Space charge</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Piégeage porteur charge</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Charge carrier trapping</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Captura portador carga</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>XRD</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Carbone</s0>
<s2>NC</s2>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Carbon</s0>
<s2>NC</s2>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Chlore</s0>
<s2>NC</s2>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Chlorine</s0>
<s2>NC</s2>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Profil profondeur</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Depth profiles</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Adsorption</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Adsorption</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Chlorure</s0>
<s2>NA</s2>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Chlorides</s0>
<s2>NA</s2>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Sulfure</s0>
<s2>NA</s2>
<s5>39</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Sulfides</s0>
<s2>NA</s2>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>40</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>41</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>41</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>42</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>42</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Séléniure</s0>
<s2>NA</s2>
<s5>43</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Selenides</s0>
<s2>NA</s2>
<s5>43</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>44</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>44</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>Hydroxyde</s0>
<s2>NA</s2>
<s5>45</s5>
</fC03>
<fC03 i1="31" i2="3" l="ENG">
<s0>Hydroxides</s0>
<s2>NA</s2>
<s5>45</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Al2O3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>Substrat Aluminium</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="37" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="38" i2="3" l="FRE">
<s0>7350J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="39" i2="3" l="FRE">
<s0>7361</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000059 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000059 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0084496
   |texte=   Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se2 solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024